key.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815
  1. /*
  2. *
  3. * Embedded Linux library
  4. *
  5. * Copyright (C) 2016 Intel Corporation. All rights reserved.
  6. *
  7. * This library is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * This library is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with this library; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  20. *
  21. */
  22. #ifdef HAVE_CONFIG_H
  23. #include <config.h>
  24. #endif
  25. #define _GNU_SOURCE
  26. #include <unistd.h>
  27. #include <stdint.h>
  28. #include <sys/syscall.h>
  29. #include <linux/keyctl.h>
  30. #include <errno.h>
  31. #include "private.h"
  32. #include "useful.h"
  33. #include "key.h"
  34. #include "string.h"
  35. #include "random.h"
  36. #include "missing.h"
  37. #ifndef KEYCTL_DH_COMPUTE
  38. #define KEYCTL_DH_COMPUTE 23
  39. #endif
  40. #ifndef KEYCTL_PKEY_QUERY
  41. #define KEYCTL_PKEY_QUERY 24
  42. #define KEYCTL_PKEY_ENCRYPT 25
  43. #define KEYCTL_PKEY_DECRYPT 26
  44. #define KEYCTL_PKEY_SIGN 27
  45. #define KEYCTL_PKEY_VERIFY 28
  46. #define KEYCTL_SUPPORTS_ENCRYPT 0x01
  47. #define KEYCTL_SUPPORTS_DECRYPT 0x02
  48. #define KEYCTL_SUPPORTS_SIGN 0x04
  49. #define KEYCTL_SUPPORTS_VERIFY 0x08
  50. struct keyctl_pkey_query {
  51. uint32_t supported_ops;
  52. uint32_t key_size;
  53. uint16_t max_data_size;
  54. uint16_t max_sig_size;
  55. uint16_t max_enc_size;
  56. uint16_t max_dec_size;
  57. uint32_t __spare[10];
  58. };
  59. struct keyctl_pkey_params {
  60. int32_t key_id;
  61. uint32_t in_len;
  62. union {
  63. uint32_t out_len;
  64. uint32_t in2_len;
  65. };
  66. uint32_t __spare[7];
  67. };
  68. /* Work around the missing (pre-4.7) or broken (4.14.{70,71,72} and
  69. * 4.18.{8,9,10}) kernel declaration of struct keyctl_dh_params
  70. */
  71. struct dh_params {
  72. int32_t private;
  73. int32_t prime;
  74. int32_t base;
  75. };
  76. #else
  77. /* When KEYCTL_PKEY_QUERY is defined by the kernel, the
  78. * struct keyctl_dh_params declaration is valid.
  79. */
  80. #define dh_params keyctl_dh_params
  81. #endif
  82. #ifndef KEYCTL_RESTRICT_KEYRING
  83. #define KEYCTL_RESTRICT_KEYRING 29
  84. #endif
  85. static int32_t internal_keyring;
  86. struct l_key {
  87. int type;
  88. int32_t serial;
  89. };
  90. struct l_keyring {
  91. int32_t serial;
  92. };
  93. static const char * const key_type_names[] = {
  94. [L_KEY_RAW] = "user",
  95. [L_KEY_RSA] = "asymmetric",
  96. };
  97. static long kernel_add_key(const char *type, const char *description,
  98. const void *payload, size_t len, int32_t keyring)
  99. {
  100. long result;
  101. result = syscall(__NR_add_key, type, description, payload, len,
  102. keyring);
  103. return result >= 0 ? result : -errno;
  104. }
  105. static long kernel_read_key(int32_t serial, const void *payload, size_t len)
  106. {
  107. long result;
  108. result = syscall(__NR_keyctl, KEYCTL_READ, serial, payload, len);
  109. return result >= 0 ? result : -errno;
  110. }
  111. static long kernel_update_key(int32_t serial, const void *payload, size_t len)
  112. {
  113. long result;
  114. result = syscall(__NR_keyctl, KEYCTL_UPDATE, serial, payload, len);
  115. return result >= 0 ? result : -errno;
  116. }
  117. static long kernel_invalidate_key(int32_t serial)
  118. {
  119. long result;
  120. result = syscall(__NR_keyctl, KEYCTL_INVALIDATE, serial);
  121. return result >= 0 ? result : -errno;
  122. }
  123. static long kernel_link_key(int32_t key_serial, int32_t ring_serial)
  124. {
  125. long result;
  126. result = syscall(__NR_keyctl, KEYCTL_LINK, key_serial, ring_serial);
  127. return result >= 0 ? result : -errno;
  128. }
  129. static long kernel_unlink_key(int32_t key_serial, int32_t ring_serial)
  130. {
  131. long result;
  132. result = syscall(__NR_keyctl, KEYCTL_UNLINK, key_serial, ring_serial);
  133. return result >= 0 ? result : -errno;
  134. }
  135. static char *format_key_info(const char *encoding, const char *hash)
  136. {
  137. struct l_string *info;
  138. if (!encoding && !hash)
  139. return NULL;
  140. info = l_string_new(0);
  141. if (encoding)
  142. l_string_append_printf(info, "enc=%s ", encoding);
  143. if (hash)
  144. l_string_append_printf(info, "hash=%s", hash);
  145. return l_string_unwrap(info);
  146. }
  147. static long kernel_query_key(int32_t key_serial, const char *encoding,
  148. const char *hash, size_t *size, bool *public)
  149. {
  150. long result;
  151. struct keyctl_pkey_query query;
  152. char *info = format_key_info(encoding, hash);
  153. memset(&query, 0, sizeof(query));
  154. result = syscall(__NR_keyctl, KEYCTL_PKEY_QUERY, key_serial, 0,
  155. info ?: "", &query);
  156. if (result == 0) {
  157. *size = query.key_size;
  158. *public = ((query.supported_ops & KEYCTL_SUPPORTS_ENCRYPT) &&
  159. !(query.supported_ops & KEYCTL_SUPPORTS_DECRYPT));
  160. }
  161. l_free(info);
  162. return result >= 0 ? result : -errno;
  163. }
  164. static long kernel_dh_compute(int32_t private, int32_t prime, int32_t base,
  165. void *payload, size_t len)
  166. {
  167. long result;
  168. struct dh_params params = { .private = private,
  169. .prime = prime,
  170. .base = base };
  171. result = syscall(__NR_keyctl, KEYCTL_DH_COMPUTE, &params, payload, len,
  172. NULL);
  173. return result >= 0 ? result : -errno;
  174. }
  175. static long kernel_restrict_keyring(int32_t serial, const char *keytype,
  176. const char *restriction)
  177. {
  178. long result;
  179. result = syscall(__NR_keyctl, KEYCTL_RESTRICT_KEYRING, serial, keytype,
  180. restriction);
  181. return result >= 0 ? result : -errno;
  182. }
  183. static long kernel_key_eds(int op, int32_t serial, const char *encoding,
  184. const char *hash, const void *in, void *out,
  185. size_t len_in, size_t len_out)
  186. {
  187. long result;
  188. struct keyctl_pkey_params params = { .key_id = serial,
  189. .in_len = len_in,
  190. .out_len = len_out };
  191. char *info = format_key_info(encoding, hash);
  192. memset(out, 0, len_out);
  193. result = syscall(__NR_keyctl, op, &params, info ?: "", in, out);
  194. l_free(info);
  195. return result >= 0 ? result : -errno;
  196. }
  197. static long kernel_key_verify(int32_t serial,
  198. const char *encoding, const char *hash,
  199. const void *data, size_t data_len,
  200. const void *sig, size_t sig_len)
  201. {
  202. struct keyctl_pkey_params params = {
  203. .key_id = serial,
  204. .in_len = data_len,
  205. .in2_len = sig_len,
  206. };
  207. char *info = format_key_info(encoding, hash);
  208. long result;
  209. result = syscall(__NR_keyctl, KEYCTL_PKEY_VERIFY, &params,
  210. info ?: "", data, sig);
  211. l_free(info);
  212. return result >= 0 ? result : -errno;
  213. }
  214. static bool setup_internal_keyring(void)
  215. {
  216. internal_keyring = kernel_add_key("keyring", "ell-internal", NULL, 0,
  217. KEY_SPEC_THREAD_KEYRING);
  218. if (internal_keyring <= 0) {
  219. internal_keyring = 0;
  220. return false;
  221. }
  222. return true;
  223. }
  224. LIB_EXPORT struct l_key *l_key_new(enum l_key_type type, const void *payload,
  225. size_t payload_length)
  226. {
  227. struct l_key *key;
  228. char *description;
  229. static unsigned long key_idx;
  230. if (unlikely(!payload))
  231. return NULL;
  232. if (unlikely((size_t)type >= L_ARRAY_SIZE(key_type_names)))
  233. return NULL;
  234. if (!internal_keyring && !setup_internal_keyring())
  235. return NULL;
  236. key = l_new(struct l_key, 1);
  237. key->type = type;
  238. description = l_strdup_printf("ell-key-%lu", key_idx++);
  239. key->serial = kernel_add_key(key_type_names[type], description, payload,
  240. payload_length, internal_keyring);
  241. l_free(description);
  242. if (key->serial < 0) {
  243. l_free(key);
  244. key = NULL;
  245. }
  246. /*
  247. * TODO: Query asymmetric key algorithm from the kernel and
  248. * ensure that it matches the expected l_key_type. This can
  249. * currently be found by digging through /proc/keys, but a
  250. * keyctl() op makes more sense.
  251. */
  252. return key;
  253. }
  254. LIB_EXPORT void l_key_free(struct l_key *key)
  255. {
  256. if (unlikely(!key))
  257. return;
  258. /*
  259. * Use invalidate as, unlike revoke, this doesn't delay the
  260. * key garbage collection and causes the quota used by the
  261. * key to be released sooner and more predictably.
  262. */
  263. kernel_invalidate_key(key->serial);
  264. l_free(key);
  265. }
  266. LIB_EXPORT void l_key_free_norevoke(struct l_key *key)
  267. {
  268. if (unlikely(!key))
  269. return;
  270. kernel_unlink_key(key->serial, internal_keyring);
  271. l_free(key);
  272. }
  273. LIB_EXPORT bool l_key_update(struct l_key *key, const void *payload, size_t len)
  274. {
  275. long error;
  276. if (unlikely(!key))
  277. return false;
  278. error = kernel_update_key(key->serial, payload, len);
  279. return error == 0;
  280. }
  281. LIB_EXPORT bool l_key_extract(struct l_key *key, void *payload, size_t *len)
  282. {
  283. long keylen;
  284. if (unlikely(!key))
  285. return false;
  286. keylen = kernel_read_key(key->serial, payload, *len);
  287. if (keylen < 0 || (size_t)keylen > *len) {
  288. explicit_bzero(payload, *len);
  289. return false;
  290. }
  291. *len = keylen;
  292. return true;
  293. }
  294. LIB_EXPORT ssize_t l_key_get_payload_size(struct l_key *key)
  295. {
  296. return kernel_read_key(key->serial, NULL, 0);
  297. }
  298. static const char *lookup_cipher(enum l_key_cipher_type cipher)
  299. {
  300. const char* ret = NULL;
  301. switch (cipher) {
  302. case L_KEY_RSA_PKCS1_V1_5:
  303. ret = "pkcs1";
  304. break;
  305. case L_KEY_RSA_RAW:
  306. ret = "raw";
  307. break;
  308. }
  309. return ret;
  310. }
  311. static const char *lookup_checksum(enum l_checksum_type checksum)
  312. {
  313. const char* ret = NULL;
  314. switch (checksum) {
  315. case L_CHECKSUM_NONE:
  316. break;
  317. case L_CHECKSUM_MD4:
  318. ret = "md4";
  319. break;
  320. case L_CHECKSUM_MD5:
  321. ret = "md5";
  322. break;
  323. case L_CHECKSUM_SHA1:
  324. ret = "sha1";
  325. break;
  326. case L_CHECKSUM_SHA224:
  327. ret = "sha224";
  328. break;
  329. case L_CHECKSUM_SHA256:
  330. ret = "sha256";
  331. break;
  332. case L_CHECKSUM_SHA384:
  333. ret = "sha384";
  334. break;
  335. case L_CHECKSUM_SHA512:
  336. ret = "sha512";
  337. break;
  338. }
  339. return ret;
  340. }
  341. LIB_EXPORT bool l_key_get_info(struct l_key *key, enum l_key_cipher_type cipher,
  342. enum l_checksum_type checksum, size_t *bits,
  343. bool *public)
  344. {
  345. if (unlikely(!key))
  346. return false;
  347. return !kernel_query_key(key->serial, lookup_cipher(cipher),
  348. lookup_checksum(checksum), bits,
  349. public);
  350. }
  351. LIB_EXPORT struct l_key *l_key_generate_dh_private(const void *prime_buf,
  352. size_t prime_len)
  353. {
  354. uint8_t *buf;
  355. const uint8_t *prime = prime_buf;
  356. size_t prime_bits;
  357. unsigned int i;
  358. size_t private_bytes;
  359. size_t random_bytes;
  360. struct l_key *private;
  361. /* Find the prime's bit length excluding leading 0s */
  362. for (i = 0; i < prime_len && !prime[i]; i++);
  363. if (i == prime_len || (i == prime_len - 1 && prime[i] < 5))
  364. return NULL;
  365. prime_bits = (prime_len - i) * 8 - __builtin_clz(prime[i]);
  366. /*
  367. * Generate a random DH private value conforming to 1 < x < p - 1.
  368. * To do this covering all possible values in this range with the
  369. * same probability of generating each value generally requires
  370. * looping. Instead we generate a value in the range
  371. * [2 ^ (prime_bits - 2), 2 ^ (prime_bits - 1) - 1] by forcing bit
  372. * prime_bits - 2 to 1, i.e. the range in PKCS #3 Section 7.1 for
  373. * l equal to prime_bits - 1. This means we're using between
  374. * one half and one quarter of the full [2, p - 2] range, i.e.
  375. * between 1 and 2 bits fewer. Note that since p is odd
  376. * p - 1 has the same bit length as p and so our maximum value
  377. * 2 ^ (prime_bits - 1) - 1 is still less than p - 1.
  378. */
  379. private_bytes = ((prime_bits - 1) + 7) / 8;
  380. random_bytes = ((prime_bits - 2) + 7) / 8;
  381. buf = l_malloc(private_bytes);
  382. l_getrandom(buf + private_bytes - random_bytes, random_bytes);
  383. buf[0] &= (1 << ((prime_bits - 2) % 8)) - 1;
  384. buf[0] |= 1 << ((prime_bits - 2) % 8);
  385. private = l_key_new(L_KEY_RAW, buf, private_bytes);
  386. explicit_bzero(buf, private_bytes);
  387. l_free(buf);
  388. return private;
  389. }
  390. static bool compute_common(struct l_key *base, struct l_key *private,
  391. struct l_key *prime, void *payload, size_t *len)
  392. {
  393. long result_len;
  394. bool usable_payload = *len != 0;
  395. result_len = kernel_dh_compute(private->serial, prime->serial,
  396. base->serial, payload, *len);
  397. if (result_len > 0) {
  398. *len = result_len;
  399. return usable_payload;
  400. }
  401. return false;
  402. }
  403. LIB_EXPORT bool l_key_compute_dh_public(struct l_key *generator,
  404. struct l_key *private,
  405. struct l_key *prime,
  406. void *payload, size_t *len)
  407. {
  408. return compute_common(generator, private, prime, payload, len);
  409. }
  410. LIB_EXPORT bool l_key_compute_dh_secret(struct l_key *other_public,
  411. struct l_key *private,
  412. struct l_key *prime,
  413. void *payload, size_t *len)
  414. {
  415. return compute_common(other_public, private, prime, payload, len);
  416. }
  417. static int be_bignum_compare(const uint8_t *a, size_t a_len,
  418. const uint8_t *b, size_t b_len)
  419. {
  420. unsigned int i;
  421. if (a_len >= b_len) {
  422. for (i = 0; i < a_len - b_len; i++)
  423. if (a[i])
  424. return 1;
  425. return memcmp(a + i, b, b_len);
  426. }
  427. for (i = 0; i < b_len - a_len; i++)
  428. if (b[i])
  429. return -1;
  430. return memcmp(a, b + i, a_len);
  431. }
  432. /*
  433. * Validate that @payload is within range for a private and public key for
  434. * a DH computation in the finite field group defined by modulus @prime_buf,
  435. * both numbers stored as big-endian integers. We require a key in the
  436. * [2, prime - 2] (inclusive) interval. PKCS #3 does not exclude 1 as a
  437. * private key but other specs do.
  438. */
  439. LIB_EXPORT bool l_key_validate_dh_payload(const void *payload, size_t len,
  440. const void *prime_buf, size_t prime_len)
  441. {
  442. static const uint8_t one[] = { 1 };
  443. uint8_t prime_1[prime_len];
  444. /*
  445. * Produce prime - 1 for the payload < prime - 1 check.
  446. * prime is odd so just zero the LSB.
  447. */
  448. memcpy(prime_1, prime_buf, prime_len);
  449. if (prime_len < 1 || !(prime_1[prime_len - 1] & 1))
  450. return false;
  451. prime_1[prime_len - 1] &= ~1;
  452. if (be_bignum_compare(payload, len, one, 1) <= 0)
  453. return false;
  454. if (be_bignum_compare(payload, len, prime_1, prime_len) >= 0)
  455. return false;
  456. return true;
  457. }
  458. /* Common code for encrypt/decrypt/sign */
  459. static ssize_t eds_common(struct l_key *key,
  460. enum l_key_cipher_type cipher,
  461. enum l_checksum_type checksum, const void *in,
  462. void *out, size_t len_in, size_t len_out,
  463. int op)
  464. {
  465. if (unlikely(!key))
  466. return -EINVAL;
  467. return kernel_key_eds(op, key->serial, lookup_cipher(cipher),
  468. lookup_checksum(checksum), in, out, len_in,
  469. len_out);
  470. }
  471. LIB_EXPORT ssize_t l_key_encrypt(struct l_key *key,
  472. enum l_key_cipher_type cipher,
  473. enum l_checksum_type checksum,
  474. const void *in, void *out,
  475. size_t len_in, size_t len_out)
  476. {
  477. ssize_t ret_len;
  478. ret_len = eds_common(key, cipher, checksum, in, out,
  479. len_in, len_out,
  480. KEYCTL_PKEY_ENCRYPT);
  481. return ret_len;
  482. }
  483. LIB_EXPORT ssize_t l_key_decrypt(struct l_key *key,
  484. enum l_key_cipher_type cipher,
  485. enum l_checksum_type checksum,
  486. const void *in, void *out,
  487. size_t len_in, size_t len_out)
  488. {
  489. ssize_t ret_len;
  490. ret_len = eds_common(key, cipher, checksum, in, out, len_in,
  491. len_out, KEYCTL_PKEY_DECRYPT);
  492. if (ret_len < 0)
  493. goto done;
  494. done:
  495. return ret_len;
  496. }
  497. LIB_EXPORT ssize_t l_key_sign(struct l_key *key,
  498. enum l_key_cipher_type cipher,
  499. enum l_checksum_type checksum, const void *in,
  500. void *out, size_t len_in, size_t len_out)
  501. {
  502. ssize_t ret_len;
  503. ret_len = eds_common(key, cipher, checksum, in, out,
  504. len_in, len_out,
  505. KEYCTL_PKEY_SIGN);
  506. return ret_len;
  507. }
  508. LIB_EXPORT bool l_key_verify(struct l_key *key,
  509. enum l_key_cipher_type cipher,
  510. enum l_checksum_type checksum, const void *data,
  511. const void *sig, size_t len_data,
  512. size_t len_sig)
  513. {
  514. long result;
  515. if (unlikely(!key))
  516. return false;
  517. result = kernel_key_verify(key->serial, lookup_cipher(cipher),
  518. lookup_checksum(checksum),
  519. data, len_data,
  520. sig, len_sig);
  521. return result >= 0;
  522. }
  523. LIB_EXPORT struct l_keyring *l_keyring_new(void)
  524. {
  525. struct l_keyring *keyring;
  526. char *description;
  527. static unsigned long keyring_idx;
  528. if (!internal_keyring && !setup_internal_keyring())
  529. return NULL;
  530. keyring = l_new(struct l_keyring, 1);
  531. description = l_strdup_printf("ell-keyring-%lu", keyring_idx++);
  532. keyring->serial = kernel_add_key("keyring", description, NULL, 0,
  533. internal_keyring);
  534. l_free(description);
  535. if (keyring->serial < 0) {
  536. l_free(keyring);
  537. return NULL;
  538. }
  539. return keyring;
  540. }
  541. LIB_EXPORT bool l_keyring_restrict(struct l_keyring *keyring,
  542. enum l_keyring_restriction res,
  543. const struct l_keyring *trusted)
  544. {
  545. char *restriction = NULL;
  546. long result;
  547. switch (res) {
  548. case L_KEYRING_RESTRICT_ASYM:
  549. case L_KEYRING_RESTRICT_ASYM_CHAIN:
  550. {
  551. char *option = "";
  552. if (res == L_KEYRING_RESTRICT_ASYM_CHAIN)
  553. option = ":chain";
  554. restriction = l_strdup_printf("key_or_keyring:%d%s",
  555. trusted ? trusted->serial : 0,
  556. option);
  557. break;
  558. }
  559. default:
  560. /* Unsupported type */
  561. return NULL;
  562. }
  563. result = kernel_restrict_keyring(keyring->serial, "asymmetric",
  564. restriction);
  565. l_free(restriction);
  566. return result == 0;
  567. }
  568. LIB_EXPORT void l_keyring_free(struct l_keyring *keyring)
  569. {
  570. if (unlikely(!keyring))
  571. return;
  572. kernel_invalidate_key(keyring->serial);
  573. l_free(keyring);
  574. }
  575. LIB_EXPORT void l_keyring_free_norevoke(struct l_keyring *keyring)
  576. {
  577. if (unlikely(!keyring))
  578. return;
  579. kernel_unlink_key(keyring->serial, internal_keyring);
  580. l_free(keyring);
  581. }
  582. LIB_EXPORT bool l_keyring_link(struct l_keyring *keyring,
  583. const struct l_key *key)
  584. {
  585. long error;
  586. if (unlikely(!keyring) || unlikely(!key))
  587. return false;
  588. error = kernel_link_key(key->serial, keyring->serial);
  589. return error == 0;
  590. }
  591. LIB_EXPORT bool l_keyring_unlink(struct l_keyring *keyring,
  592. const struct l_key *key)
  593. {
  594. long error;
  595. if (unlikely(!keyring) || unlikely(!key))
  596. return false;
  597. error = kernel_unlink_key(key->serial, keyring->serial);
  598. return error == 0;
  599. }
  600. LIB_EXPORT bool l_keyring_link_nested(struct l_keyring *keyring,
  601. const struct l_keyring *nested)
  602. {
  603. long error;
  604. if (unlikely(!keyring) || unlikely(!nested))
  605. return false;
  606. error = kernel_link_key(nested->serial, keyring->serial);
  607. return error == 0;
  608. }
  609. LIB_EXPORT bool l_keyring_unlink_nested(struct l_keyring *keyring,
  610. const struct l_keyring *nested)
  611. {
  612. long error;
  613. if (unlikely(!keyring) || unlikely(!nested))
  614. return false;
  615. error = kernel_unlink_key(nested->serial, keyring->serial);
  616. return error == 0;
  617. }
  618. LIB_EXPORT bool l_key_is_supported(uint32_t features)
  619. {
  620. long result;
  621. if (features & L_KEY_FEATURE_DH) {
  622. result = syscall(__NR_keyctl, KEYCTL_DH_COMPUTE, NULL, "x", 1,
  623. NULL);
  624. if (result == -1 && errno == EOPNOTSUPP)
  625. return false;
  626. }
  627. if (features & L_KEY_FEATURE_RESTRICT) {
  628. result = syscall(__NR_keyctl, KEYCTL_RESTRICT_KEYRING, 0,
  629. "asymmetric", "");
  630. if (result == -1 && errno == EOPNOTSUPP)
  631. return false;
  632. }
  633. if (features & L_KEY_FEATURE_CRYPTO) {
  634. result = syscall(__NR_keyctl, KEYCTL_PKEY_QUERY, 0, 0, "", 0);
  635. if (result == -1 && errno == EOPNOTSUPP)
  636. return false;
  637. }
  638. return true;
  639. }