ecc-external.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948
  1. /*
  2. * Copyright (c) 2013, Kenneth MacKay
  3. * All rights reserved.
  4. *
  5. * Redistribution and use in source and binary forms, with or without
  6. * modification, are permitted provided that the following conditions are
  7. * met:
  8. * * Redistributions of source code must retain the above copyright
  9. * notice, this list of conditions and the following disclaimer.
  10. * * Redistributions in binary form must reproduce the above copyright
  11. * notice, this list of conditions and the following disclaimer in the
  12. * documentation and/or other materials provided with the distribution.
  13. *
  14. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  15. * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  16. * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  17. * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  18. * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  19. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  20. * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  21. * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  22. * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  23. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  24. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  25. */
  26. #ifdef HAVE_CONFIG_H
  27. #include <config.h>
  28. #endif
  29. #include <stdint.h>
  30. #include <stdbool.h>
  31. #include "private.h"
  32. #include "ecc.h"
  33. #include "ecc-private.h"
  34. #include "random.h"
  35. typedef struct {
  36. uint64_t m_low;
  37. uint64_t m_high;
  38. } uint128_t;
  39. static void vli_clear(uint64_t *vli, unsigned int ndigits)
  40. {
  41. unsigned int i;
  42. for (i = 0; i < ndigits; i++)
  43. vli[i] = 0;
  44. }
  45. /* Returns true if vli == 0, false otherwise. */
  46. static bool vli_is_zero(const uint64_t *vli, unsigned int ndigits)
  47. {
  48. unsigned int i;
  49. for (i = 0; i < ndigits; i++) {
  50. if (vli[i])
  51. return false;
  52. }
  53. return true;
  54. }
  55. /* Returns nonzero if bit bit of vli is set. */
  56. static uint64_t vli_test_bit(const uint64_t *vli, unsigned int bit)
  57. {
  58. return (vli[bit / 64] & ((uint64_t) 1 << (bit % 64)));
  59. }
  60. /* Sets dest = src. */
  61. static void vli_set(uint64_t *dest, const uint64_t *src, unsigned int ndigits)
  62. {
  63. unsigned int i;
  64. for (i = 0; i < ndigits; i++)
  65. dest[i] = src[i];
  66. }
  67. /* Returns sign of left - right. */
  68. int _vli_cmp(const uint64_t *left, const uint64_t *right, unsigned int ndigits)
  69. {
  70. int i;
  71. for (i = ndigits - 1; i >= 0; i--) {
  72. if (left[i] > right[i])
  73. return 1;
  74. if (left[i] < right[i])
  75. return -1;
  76. }
  77. return 0;
  78. }
  79. /* Computes result = in << c, returning carry. Can modify in place
  80. * (if result == in). 0 < shift < 64.
  81. */
  82. static uint64_t vli_lshift(uint64_t *result, const uint64_t *in,
  83. unsigned int shift,
  84. unsigned int ndigits)
  85. {
  86. uint64_t carry = 0;
  87. unsigned int i;
  88. for (i = 0; i < ndigits; i++) {
  89. uint64_t temp = in[i];
  90. result[i] = (temp << shift) | carry;
  91. carry = temp >> (64 - shift);
  92. }
  93. return carry;
  94. }
  95. /* Computes vli = vli >> 1. */
  96. void _vli_rshift1(uint64_t *vli, unsigned int ndigits)
  97. {
  98. uint64_t *end = vli;
  99. uint64_t carry = 0;
  100. vli += ndigits;
  101. while (vli-- > end) {
  102. uint64_t temp = *vli;
  103. *vli = (temp >> 1) | carry;
  104. carry = temp << 63;
  105. }
  106. }
  107. /* Computes result = left + right, returning carry. Can modify in place. */
  108. uint64_t _vli_add(uint64_t *result, const uint64_t *left,
  109. const uint64_t *right, unsigned int ndigits)
  110. {
  111. uint64_t carry = 0;
  112. unsigned int i;
  113. for (i = 0; i < ndigits; i++) {
  114. uint64_t sum;
  115. sum = left[i] + right[i] + carry;
  116. if (sum != left[i])
  117. carry = (sum < left[i]);
  118. result[i] = sum;
  119. }
  120. return carry;
  121. }
  122. /* Computes result = left - right, returning borrow. Can modify in place. */
  123. uint64_t _vli_sub(uint64_t *result, const uint64_t *left,
  124. const uint64_t *right, unsigned int ndigits)
  125. {
  126. uint64_t borrow = 0;
  127. unsigned int i;
  128. for (i = 0; i < ndigits; i++) {
  129. uint64_t diff;
  130. diff = left[i] - right[i] - borrow;
  131. if (diff != left[i])
  132. borrow = (diff > left[i]);
  133. result[i] = diff;
  134. }
  135. return borrow;
  136. }
  137. static uint128_t mul_64_64(uint64_t left, uint64_t right)
  138. {
  139. uint64_t a0 = left & 0xffffffffull;
  140. uint64_t a1 = left >> 32;
  141. uint64_t b0 = right & 0xffffffffull;
  142. uint64_t b1 = right >> 32;
  143. uint64_t m0 = a0 * b0;
  144. uint64_t m1 = a0 * b1;
  145. uint64_t m2 = a1 * b0;
  146. uint64_t m3 = a1 * b1;
  147. uint128_t result;
  148. m2 += (m0 >> 32);
  149. m2 += m1;
  150. /* Overflow */
  151. if (m2 < m1)
  152. m3 += 0x100000000ull;
  153. result.m_low = (m0 & 0xffffffffull) | (m2 << 32);
  154. result.m_high = m3 + (m2 >> 32);
  155. return result;
  156. }
  157. static uint128_t add_128_128(uint128_t a, uint128_t b)
  158. {
  159. uint128_t result;
  160. result.m_low = a.m_low + b.m_low;
  161. result.m_high = a.m_high + b.m_high + (result.m_low < a.m_low);
  162. return result;
  163. }
  164. static void vli_mult(uint64_t *result, const uint64_t *left,
  165. const uint64_t *right,
  166. unsigned int ndigits)
  167. {
  168. uint128_t r01 = { 0, 0 };
  169. uint64_t r2 = 0;
  170. unsigned int i, k;
  171. /* Compute each digit of result in sequence, maintaining the
  172. * carries.
  173. */
  174. for (k = 0; k < ndigits * 2 - 1; k++) {
  175. unsigned int min;
  176. if (k < ndigits)
  177. min = 0;
  178. else
  179. min = (k + 1) - ndigits;
  180. for (i = min; i <= k && i < ndigits; i++) {
  181. uint128_t product;
  182. product = mul_64_64(left[i], right[k - i]);
  183. r01 = add_128_128(r01, product);
  184. r2 += (r01.m_high < product.m_high);
  185. }
  186. result[k] = r01.m_low;
  187. r01.m_low = r01.m_high;
  188. r01.m_high = r2;
  189. r2 = 0;
  190. }
  191. result[ndigits * 2 - 1] = r01.m_low;
  192. }
  193. static void vli_square(uint64_t *result, const uint64_t *left,
  194. unsigned int ndigits)
  195. {
  196. uint128_t r01 = { 0, 0 };
  197. uint64_t r2 = 0;
  198. unsigned int i, k;
  199. for (k = 0; k < ndigits * 2 - 1; k++) {
  200. unsigned int min;
  201. if (k < ndigits)
  202. min = 0;
  203. else
  204. min = (k + 1) - ndigits;
  205. for (i = min; i <= k && i <= k - i; i++) {
  206. uint128_t product;
  207. product = mul_64_64(left[i], left[k - i]);
  208. if (i < k - i) {
  209. r2 += product.m_high >> 63;
  210. product.m_high = (product.m_high << 1) |
  211. (product.m_low >> 63);
  212. product.m_low <<= 1;
  213. }
  214. r01 = add_128_128(r01, product);
  215. r2 += (r01.m_high < product.m_high);
  216. }
  217. result[k] = r01.m_low;
  218. r01.m_low = r01.m_high;
  219. r01.m_high = r2;
  220. r2 = 0;
  221. }
  222. result[ndigits * 2 - 1] = r01.m_low;
  223. }
  224. /* Computes result = (left + right) % mod.
  225. * Assumes that left < mod and right < mod, result != mod.
  226. */
  227. void _vli_mod_add(uint64_t *result, const uint64_t *left,
  228. const uint64_t *right, const uint64_t *mod,
  229. unsigned int ndigits)
  230. {
  231. uint64_t carry;
  232. carry = _vli_add(result, left, right, ndigits);
  233. /* result > mod (result = mod + remainder), so subtract mod to
  234. * get remainder.
  235. */
  236. if (carry || _vli_cmp(result, mod, ndigits) >= 0)
  237. _vli_sub(result, result, mod, ndigits);
  238. }
  239. /* Computes result = (left - right) % mod.
  240. * Assumes that left < mod and right < mod, result != mod.
  241. */
  242. void _vli_mod_sub(uint64_t *result, const uint64_t *left,
  243. const uint64_t *right, const uint64_t *mod,
  244. unsigned int ndigits)
  245. {
  246. uint64_t borrow = _vli_sub(result, left, right, ndigits);
  247. /* In this case, p_result == -diff == (max int) - diff.
  248. * Since -x % d == d - x, we can get the correct result from
  249. * result + mod (with overflow).
  250. */
  251. if (borrow)
  252. _vli_add(result, result, mod, ndigits);
  253. }
  254. /* Computes p_result = p_product % curve_p.
  255. * See algorithm 5 and 6 from
  256. * http://www.isys.uni-klu.ac.at/PDF/2001-0126-MT.pdf
  257. */
  258. static void vli_mmod_fast_192(uint64_t *result, const uint64_t *product,
  259. const uint64_t *curve_prime, uint64_t *tmp)
  260. {
  261. const unsigned int ndigits = 3;
  262. int carry;
  263. vli_set(result, product, ndigits);
  264. vli_set(tmp, &product[3], ndigits);
  265. carry = _vli_add(result, result, tmp, ndigits);
  266. tmp[0] = 0;
  267. tmp[1] = product[3];
  268. tmp[2] = product[4];
  269. carry += _vli_add(result, result, tmp, ndigits);
  270. tmp[0] = tmp[1] = product[5];
  271. tmp[2] = 0;
  272. carry += _vli_add(result, result, tmp, ndigits);
  273. while (carry || _vli_cmp(curve_prime, result, ndigits) != 1)
  274. carry -= _vli_sub(result, result, curve_prime, ndigits);
  275. }
  276. /* Computes result = product % curve_prime
  277. * from http://www.nsa.gov/ia/_files/nist-routines.pdf
  278. */
  279. static void vli_mmod_fast_256(uint64_t *result, const uint64_t *product,
  280. const uint64_t *curve_prime, uint64_t *tmp)
  281. {
  282. int carry;
  283. const unsigned int ndigits = 4;
  284. /* t */
  285. vli_set(result, product, ndigits);
  286. /* s1 */
  287. tmp[0] = 0;
  288. tmp[1] = product[5] & 0xffffffff00000000ull;
  289. tmp[2] = product[6];
  290. tmp[3] = product[7];
  291. carry = vli_lshift(tmp, tmp, 1, ndigits);
  292. carry += _vli_add(result, result, tmp, ndigits);
  293. /* s2 */
  294. tmp[1] = product[6] << 32;
  295. tmp[2] = (product[6] >> 32) | (product[7] << 32);
  296. tmp[3] = product[7] >> 32;
  297. carry += vli_lshift(tmp, tmp, 1, ndigits);
  298. carry += _vli_add(result, result, tmp, ndigits);
  299. /* s3 */
  300. tmp[0] = product[4];
  301. tmp[1] = product[5] & 0xffffffff;
  302. tmp[2] = 0;
  303. tmp[3] = product[7];
  304. carry += _vli_add(result, result, tmp, ndigits);
  305. /* s4 */
  306. tmp[0] = (product[4] >> 32) | (product[5] << 32);
  307. tmp[1] = (product[5] >> 32) | (product[6] & 0xffffffff00000000ull);
  308. tmp[2] = product[7];
  309. tmp[3] = (product[6] >> 32) | (product[4] << 32);
  310. carry += _vli_add(result, result, tmp, ndigits);
  311. /* d1 */
  312. tmp[0] = (product[5] >> 32) | (product[6] << 32);
  313. tmp[1] = (product[6] >> 32);
  314. tmp[2] = 0;
  315. tmp[3] = (product[4] & 0xffffffff) | (product[5] << 32);
  316. carry -= _vli_sub(result, result, tmp, ndigits);
  317. /* d2 */
  318. tmp[0] = product[6];
  319. tmp[1] = product[7];
  320. tmp[2] = 0;
  321. tmp[3] = (product[4] >> 32) | (product[5] & 0xffffffff00000000ull);
  322. carry -= _vli_sub(result, result, tmp, ndigits);
  323. /* d3 */
  324. tmp[0] = (product[6] >> 32) | (product[7] << 32);
  325. tmp[1] = (product[7] >> 32) | (product[4] << 32);
  326. tmp[2] = (product[4] >> 32) | (product[5] << 32);
  327. tmp[3] = (product[6] << 32);
  328. carry -= _vli_sub(result, result, tmp, ndigits);
  329. /* d4 */
  330. tmp[0] = product[7];
  331. tmp[1] = product[4] & 0xffffffff00000000ull;
  332. tmp[2] = product[5];
  333. tmp[3] = product[6] & 0xffffffff00000000ull;
  334. carry -= _vli_sub(result, result, tmp, ndigits);
  335. if (carry < 0) {
  336. do {
  337. carry += _vli_add(result, result, curve_prime, ndigits);
  338. } while (carry < 0);
  339. } else {
  340. while (carry || _vli_cmp(curve_prime, result, ndigits) != 1)
  341. carry -= _vli_sub(result, result, curve_prime, ndigits);
  342. }
  343. }
  344. /*
  345. * The NIST algorithms define S values, which are comprised of 32 bit C values
  346. * of the original product we are trying to reduce. Since we are working with
  347. * 64 bit 'digits', we need to convert these C values into 64 bit chunks. This
  348. * macro mainly makes code readability easier since we can directly pass the
  349. * two C indexes (h and l). Some of these C values are zero, which is also a
  350. * value C index. In this case -1 should be passed to indicate zero.
  351. */
  352. #define ECC_SET_S(prod, h, l) ({ \
  353. uint64_t r = 0; \
  354. if (h == -1) { \
  355. /* zero, don't do anything */ \
  356. } else if (h & 1) \
  357. r |= (prod[h / 2] & 0xffffffff00000000ull); \
  358. else \
  359. r |= (prod[h / 2] << 32); \
  360. if (l == -1) { \
  361. /* zero, don't do anything */ \
  362. } else if (l & 1) \
  363. r |= (prod[l / 2] >> 32); \
  364. else \
  365. r |= (prod[l / 2] & 0xffffffff); \
  366. r; \
  367. })
  368. static void vli_mmod_fast_384(uint64_t *result, const uint64_t *product,
  369. const uint64_t *curve_prime, uint64_t *tmp)
  370. {
  371. int carry;
  372. const unsigned int ndigits = 6;
  373. /* t */
  374. vli_set(result, product, ndigits);
  375. /* s1 */
  376. tmp[0] = 0;
  377. tmp[1] = 0;
  378. tmp[2] = ECC_SET_S(product, 22, 21);
  379. tmp[3] = ECC_SET_S(product, -1, 23);
  380. tmp[4] = 0;
  381. tmp[5] = 0;
  382. carry = vli_lshift(tmp, tmp, 1, ndigits);
  383. carry += _vli_add(result, result, tmp, ndigits);
  384. /* s2 */
  385. tmp[0] = product[6];
  386. tmp[1] = product[7];
  387. tmp[2] = product[8];
  388. tmp[3] = product[9];
  389. tmp[4] = product[10];
  390. tmp[5] = product[11];
  391. carry += _vli_add(result, result, tmp, ndigits);
  392. /* s3 */
  393. tmp[0] = ECC_SET_S(product, 22, 21);
  394. tmp[1] = ECC_SET_S(product, 12, 23);
  395. tmp[2] = ECC_SET_S(product, 14, 13);
  396. tmp[3] = ECC_SET_S(product, 16, 15);
  397. tmp[4] = ECC_SET_S(product, 18, 17);
  398. tmp[5] = ECC_SET_S(product, 20, 19);
  399. carry += _vli_add(result, result, tmp, ndigits);
  400. /* s4 */
  401. tmp[0] = ECC_SET_S(product, 23, -1);
  402. tmp[1] = ECC_SET_S(product, 20, -1);
  403. tmp[2] = ECC_SET_S(product, 13, 12);
  404. tmp[3] = ECC_SET_S(product, 15, 14);
  405. tmp[4] = ECC_SET_S(product, 17, 16);
  406. tmp[5] = ECC_SET_S(product, 19, 18);
  407. carry += _vli_add(result, result, tmp, ndigits);
  408. /* s5 */
  409. tmp[0] = 0;
  410. tmp[1] = 0;
  411. tmp[2] = ECC_SET_S(product, 21, 20);
  412. tmp[3] = ECC_SET_S(product, 23, 22);
  413. tmp[4] = 0;
  414. tmp[5] = 0;
  415. carry += _vli_add(result, result, tmp, ndigits);
  416. /* s6 */
  417. tmp[0] = ECC_SET_S(product, -1, 20);
  418. tmp[1] = ECC_SET_S(product, 21, -1);
  419. tmp[2] = ECC_SET_S(product, 23, 22);
  420. tmp[3] = 0;
  421. tmp[4] = 0;
  422. tmp[5] = 0;
  423. carry += _vli_add(result, result, tmp, ndigits);
  424. /* s7 */
  425. tmp[0] = ECC_SET_S(product, 12, 23);
  426. tmp[1] = ECC_SET_S(product, 14, 13);
  427. tmp[2] = ECC_SET_S(product, 16, 15);
  428. tmp[3] = ECC_SET_S(product, 18, 17);
  429. tmp[4] = ECC_SET_S(product, 20, 19);
  430. tmp[5] = ECC_SET_S(product, 22, 21);
  431. carry -= _vli_sub(result, result, tmp, ndigits);
  432. /* s8 */
  433. tmp[0] = ECC_SET_S(product, 20, -1);
  434. tmp[1] = ECC_SET_S(product, 22, 21);
  435. tmp[2] = ECC_SET_S(product, -1, 23);
  436. tmp[3] = 0;
  437. tmp[4] = 0;
  438. tmp[5] = 0;
  439. carry -= _vli_sub(result, result, tmp, ndigits);
  440. /* s9 */
  441. tmp[0] = 0;
  442. tmp[1] = ECC_SET_S(product, 23, -1);
  443. tmp[2] = ECC_SET_S(product, -1, 23);
  444. tmp[3] = 0;
  445. tmp[4] = 0;
  446. tmp[5] = 0;
  447. carry -= _vli_sub(result, result, tmp, ndigits);
  448. if (carry < 0) {
  449. do {
  450. carry += _vli_add(result, result, curve_prime, ndigits);
  451. } while (carry < 0);
  452. } else {
  453. while (carry || _vli_cmp(curve_prime, result, ndigits) != 1)
  454. carry -= _vli_sub(result, result, curve_prime, ndigits);
  455. }
  456. }
  457. /* Computes result = product % curve_prime
  458. * from http://www.nsa.gov/ia/_files/nist-routines.pdf
  459. */
  460. bool _vli_mmod_fast(uint64_t *result, uint64_t *product,
  461. const uint64_t *curve_prime, unsigned int ndigits)
  462. {
  463. uint64_t tmp[2 * L_ECC_MAX_DIGITS];
  464. switch (ndigits) {
  465. case 3:
  466. vli_mmod_fast_192(result, product, curve_prime, tmp);
  467. break;
  468. case 4:
  469. vli_mmod_fast_256(result, product, curve_prime, tmp);
  470. break;
  471. case 6:
  472. vli_mmod_fast_384(result, product, curve_prime, tmp);
  473. break;
  474. default:
  475. return false;
  476. }
  477. return true;
  478. }
  479. /* Computes result = (left * right) % curve_p. */
  480. void _vli_mod_mult_fast(uint64_t *result, const uint64_t *left,
  481. const uint64_t *right, const uint64_t *curve_prime,
  482. unsigned int ndigits)
  483. {
  484. uint64_t product[2 * L_ECC_MAX_DIGITS];
  485. vli_mult(product, left, right, ndigits);
  486. _vli_mmod_fast(result, product, curve_prime, ndigits);
  487. }
  488. /* Computes result = left^2 % curve_p. */
  489. void _vli_mod_square_fast(uint64_t *result, const uint64_t *left,
  490. const uint64_t *curve_prime,
  491. unsigned int ndigits)
  492. {
  493. uint64_t product[2 * L_ECC_MAX_DIGITS];
  494. vli_square(product, left, ndigits);
  495. _vli_mmod_fast(result, product, curve_prime, ndigits);
  496. }
  497. #define EVEN(vli) (!(vli[0] & 1))
  498. /* Computes result = (1 / p_input) % mod. All VLIs are the same size.
  499. * See "From Euclid's GCD to Montgomery Multiplication to the Great Divide"
  500. * https://labs.oracle.com/techrep/2001/smli_tr-2001-95.pdf
  501. */
  502. void _vli_mod_inv(uint64_t *result, const uint64_t *input,
  503. const uint64_t *mod,
  504. unsigned int ndigits)
  505. {
  506. uint64_t a[L_ECC_MAX_DIGITS], b[L_ECC_MAX_DIGITS];
  507. uint64_t u[L_ECC_MAX_DIGITS], v[L_ECC_MAX_DIGITS];
  508. uint64_t carry;
  509. int cmp_result;
  510. if (vli_is_zero(input, ndigits)) {
  511. vli_clear(result, ndigits);
  512. return;
  513. }
  514. vli_set(a, input, ndigits);
  515. vli_set(b, mod, ndigits);
  516. vli_clear(u, ndigits);
  517. u[0] = 1;
  518. vli_clear(v, ndigits);
  519. while ((cmp_result = _vli_cmp(a, b, ndigits)) != 0) {
  520. carry = 0;
  521. if (EVEN(a)) {
  522. _vli_rshift1(a, ndigits);
  523. if (!EVEN(u))
  524. carry = _vli_add(u, u, mod, ndigits);
  525. _vli_rshift1(u, ndigits);
  526. if (carry)
  527. u[ndigits - 1] |= 0x8000000000000000ull;
  528. } else if (EVEN(b)) {
  529. _vli_rshift1(b, ndigits);
  530. if (!EVEN(v))
  531. carry = _vli_add(v, v, mod, ndigits);
  532. _vli_rshift1(v, ndigits);
  533. if (carry)
  534. v[ndigits - 1] |= 0x8000000000000000ull;
  535. } else if (cmp_result > 0) {
  536. _vli_sub(a, a, b, ndigits);
  537. _vli_rshift1(a, ndigits);
  538. if (_vli_cmp(u, v, ndigits) < 0)
  539. _vli_add(u, u, mod, ndigits);
  540. _vli_sub(u, u, v, ndigits);
  541. if (!EVEN(u))
  542. carry = _vli_add(u, u, mod, ndigits);
  543. _vli_rshift1(u, ndigits);
  544. if (carry)
  545. u[ndigits - 1] |= 0x8000000000000000ull;
  546. } else {
  547. _vli_sub(b, b, a, ndigits);
  548. _vli_rshift1(b, ndigits);
  549. if (_vli_cmp(v, u, ndigits) < 0)
  550. _vli_add(v, v, mod, ndigits);
  551. _vli_sub(v, v, u, ndigits);
  552. if (!EVEN(v))
  553. carry = _vli_add(v, v, mod, ndigits);
  554. _vli_rshift1(v, ndigits);
  555. if (carry)
  556. v[ndigits - 1] |= 0x8000000000000000ull;
  557. }
  558. }
  559. vli_set(result, u, ndigits);
  560. }
  561. /* ------ Point operations ------ */
  562. /* Point multiplication algorithm using Montgomery's ladder with co-Z
  563. * coordinates. From http://eprint.iacr.org/2011/338.pdf
  564. */
  565. /* Double in place */
  566. static void ecc_point_double_jacobian(uint64_t *x1, uint64_t *y1, uint64_t *z1,
  567. const uint64_t *curve_prime,
  568. unsigned int ndigits)
  569. {
  570. /* t1 = x, t2 = y, t3 = z */
  571. uint64_t t4[L_ECC_MAX_DIGITS];
  572. uint64_t t5[L_ECC_MAX_DIGITS];
  573. if (vli_is_zero(z1, ndigits))
  574. return;
  575. /* t4 = y1^2 */
  576. _vli_mod_square_fast(t4, y1, curve_prime, ndigits);
  577. /* t5 = x1*y1^2 = A */
  578. _vli_mod_mult_fast(t5, x1, t4, curve_prime, ndigits);
  579. /* t4 = y1^4 */
  580. _vli_mod_square_fast(t4, t4, curve_prime, ndigits);
  581. /* t2 = y1*z1 = z3 */
  582. _vli_mod_mult_fast(y1, y1, z1, curve_prime, ndigits);
  583. /* t3 = z1^2 */
  584. _vli_mod_square_fast(z1, z1, curve_prime, ndigits);
  585. /* t1 = x1 + z1^2 */
  586. _vli_mod_add(x1, x1, z1, curve_prime, ndigits);
  587. /* t3 = 2*z1^2 */
  588. _vli_mod_add(z1, z1, z1, curve_prime, ndigits);
  589. /* t3 = x1 - z1^2 */
  590. _vli_mod_sub(z1, x1, z1, curve_prime, ndigits);
  591. /* t1 = x1^2 - z1^4 */
  592. _vli_mod_mult_fast(x1, x1, z1, curve_prime, ndigits);
  593. /* t3 = 2*(x1^2 - z1^4) */
  594. _vli_mod_add(z1, x1, x1, curve_prime, ndigits);
  595. /* t1 = 3*(x1^2 - z1^4) */
  596. _vli_mod_add(x1, x1, z1, curve_prime, ndigits);
  597. if (vli_test_bit(x1, 0)) {
  598. uint64_t carry = _vli_add(x1, x1, curve_prime, ndigits);
  599. _vli_rshift1(x1, ndigits);
  600. x1[ndigits - 1] |= carry << 63;
  601. } else {
  602. _vli_rshift1(x1, ndigits);
  603. }
  604. /* t1 = 3/2*(x1^2 - z1^4) = B */
  605. /* t3 = B^2 */
  606. _vli_mod_square_fast(z1, x1, curve_prime, ndigits);
  607. /* t3 = B^2 - A */
  608. _vli_mod_sub(z1, z1, t5, curve_prime, ndigits);
  609. /* t3 = B^2 - 2A = x3 */
  610. _vli_mod_sub(z1, z1, t5, curve_prime, ndigits);
  611. /* t5 = A - x3 */
  612. _vli_mod_sub(t5, t5, z1, curve_prime, ndigits);
  613. /* t1 = B * (A - x3) */
  614. _vli_mod_mult_fast(x1, x1, t5, curve_prime, ndigits);
  615. /* t4 = B * (A - x3) - y1^4 = y3 */
  616. _vli_mod_sub(t4, x1, t4, curve_prime, ndigits);
  617. vli_set(x1, z1, ndigits);
  618. vli_set(z1, y1, ndigits);
  619. vli_set(y1, t4, ndigits);
  620. }
  621. /* Modify (x1, y1) => (x1 * z^2, y1 * z^3) */
  622. static void apply_z(uint64_t *x1, uint64_t *y1, uint64_t *z,
  623. const uint64_t *curve_prime, unsigned int ndigits)
  624. {
  625. uint64_t t1[L_ECC_MAX_DIGITS];
  626. _vli_mod_square_fast(t1, z, curve_prime, ndigits); /* z^2 */
  627. _vli_mod_mult_fast(x1, x1, t1, curve_prime, ndigits); /* x1 * z^2 */
  628. _vli_mod_mult_fast(t1, t1, z, curve_prime, ndigits); /* z^3 */
  629. _vli_mod_mult_fast(y1, y1, t1, curve_prime, ndigits); /* y1 * z^3 */
  630. }
  631. /* P = (x1, y1) => 2P, (x2, y2) => P' */
  632. static void xycz_initial_double(uint64_t *x1, uint64_t *y1, uint64_t *x2,
  633. uint64_t *y2, uint64_t *p_initial_z,
  634. const uint64_t *curve_prime,
  635. unsigned int ndigits)
  636. {
  637. uint64_t z[L_ECC_MAX_DIGITS];
  638. vli_set(x2, x1, ndigits);
  639. vli_set(y2, y1, ndigits);
  640. vli_clear(z, ndigits);
  641. z[0] = 1;
  642. if (p_initial_z)
  643. vli_set(z, p_initial_z, ndigits);
  644. apply_z(x1, y1, z, curve_prime, ndigits);
  645. ecc_point_double_jacobian(x1, y1, z, curve_prime, ndigits);
  646. apply_z(x2, y2, z, curve_prime, ndigits);
  647. }
  648. /* Input P = (x1, y1, Z), Q = (x2, y2, Z)
  649. * Output P' = (x1', y1', Z3), P + Q = (x3, y3, Z3)
  650. * or P => P', Q => P + Q
  651. */
  652. static void xycz_add(uint64_t *x1, uint64_t *y1, uint64_t *x2, uint64_t *y2,
  653. const uint64_t *curve_prime, unsigned int ndigits)
  654. {
  655. /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
  656. uint64_t t5[L_ECC_MAX_DIGITS];
  657. /* t5 = x2 - x1 */
  658. _vli_mod_sub(t5, x2, x1, curve_prime, ndigits);
  659. /* t5 = (x2 - x1)^2 = A */
  660. _vli_mod_square_fast(t5, t5, curve_prime, ndigits);
  661. /* t1 = x1*A = B */
  662. _vli_mod_mult_fast(x1, x1, t5, curve_prime, ndigits);
  663. /* t3 = x2*A = C */
  664. _vli_mod_mult_fast(x2, x2, t5, curve_prime, ndigits);
  665. /* t4 = y2 - y1 */
  666. _vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
  667. /* t5 = (y2 - y1)^2 = D */
  668. _vli_mod_square_fast(t5, y2, curve_prime, ndigits);
  669. /* t5 = D - B */
  670. _vli_mod_sub(t5, t5, x1, curve_prime, ndigits);
  671. /* t5 = D - B - C = x3 */
  672. _vli_mod_sub(t5, t5, x2, curve_prime, ndigits);
  673. /* t3 = C - B */
  674. _vli_mod_sub(x2, x2, x1, curve_prime, ndigits);
  675. /* t2 = y1*(C - B) */
  676. _vli_mod_mult_fast(y1, y1, x2, curve_prime, ndigits);
  677. /* t3 = B - x3 */
  678. _vli_mod_sub(x2, x1, t5, curve_prime, ndigits);
  679. /* t4 = (y2 - y1)*(B - x3) */
  680. _vli_mod_mult_fast(y2, y2, x2, curve_prime, ndigits);
  681. /* t4 = y3 */
  682. _vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
  683. vli_set(x2, t5, ndigits);
  684. }
  685. /* Input P = (x1, y1, Z), Q = (x2, y2, Z)
  686. * Output P + Q = (x3, y3, Z3), P - Q = (x3', y3', Z3)
  687. * or P => P - Q, Q => P + Q
  688. */
  689. static void xycz_add_c(uint64_t *x1, uint64_t *y1, uint64_t *x2, uint64_t *y2,
  690. const uint64_t *curve_prime, unsigned int ndigits)
  691. {
  692. /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
  693. uint64_t t5[L_ECC_MAX_DIGITS];
  694. uint64_t t6[L_ECC_MAX_DIGITS];
  695. uint64_t t7[L_ECC_MAX_DIGITS];
  696. /* t5 = x2 - x1 */
  697. _vli_mod_sub(t5, x2, x1, curve_prime, ndigits);
  698. /* t5 = (x2 - x1)^2 = A */
  699. _vli_mod_square_fast(t5, t5, curve_prime, ndigits);
  700. /* t1 = x1*A = B */
  701. _vli_mod_mult_fast(x1, x1, t5, curve_prime, ndigits);
  702. /* t3 = x2*A = C */
  703. _vli_mod_mult_fast(x2, x2, t5, curve_prime, ndigits);
  704. /* t4 = y2 + y1 */
  705. _vli_mod_add(t5, y2, y1, curve_prime, ndigits);
  706. /* t4 = y2 - y1 */
  707. _vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
  708. /* t6 = C - B */
  709. _vli_mod_sub(t6, x2, x1, curve_prime, ndigits);
  710. /* t2 = y1 * (C - B) */
  711. _vli_mod_mult_fast(y1, y1, t6, curve_prime, ndigits);
  712. /* t6 = B + C */
  713. _vli_mod_add(t6, x1, x2, curve_prime, ndigits);
  714. /* t3 = (y2 - y1)^2 */
  715. _vli_mod_square_fast(x2, y2, curve_prime, ndigits);
  716. /* t3 = x3 */
  717. _vli_mod_sub(x2, x2, t6, curve_prime, ndigits);
  718. /* t7 = B - x3 */
  719. _vli_mod_sub(t7, x1, x2, curve_prime, ndigits);
  720. /* t4 = (y2 - y1)*(B - x3) */
  721. _vli_mod_mult_fast(y2, y2, t7, curve_prime, ndigits);
  722. /* t4 = y3 */
  723. _vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
  724. /* t7 = (y2 + y1)^2 = F */
  725. _vli_mod_square_fast(t7, t5, curve_prime, ndigits);
  726. /* t7 = x3' */
  727. _vli_mod_sub(t7, t7, t6, curve_prime, ndigits);
  728. /* t6 = x3' - B */
  729. _vli_mod_sub(t6, t7, x1, curve_prime, ndigits);
  730. /* t6 = (y2 + y1)*(x3' - B) */
  731. _vli_mod_mult_fast(t6, t6, t5, curve_prime, ndigits);
  732. /* t2 = y3' */
  733. _vli_mod_sub(y1, t6, y1, curve_prime, ndigits);
  734. vli_set(x1, t7, ndigits);
  735. }
  736. void _ecc_point_mult(struct l_ecc_point *result,
  737. const struct l_ecc_point *point, const uint64_t *scalar,
  738. uint64_t *initial_z, const uint64_t *curve_prime)
  739. {
  740. /* R0 and R1 */
  741. const struct l_ecc_curve *curve = point->curve;
  742. uint64_t rx[2][L_ECC_MAX_DIGITS];
  743. uint64_t ry[2][L_ECC_MAX_DIGITS];
  744. uint64_t z[L_ECC_MAX_DIGITS];
  745. uint64_t sk[2][L_ECC_MAX_DIGITS];
  746. int i, nb;
  747. unsigned int ndigits = curve->ndigits;
  748. int num_bits;
  749. int carry;
  750. carry = _vli_add(sk[0], scalar, curve->n, ndigits);
  751. _vli_add(sk[1], sk[0], curve->n, ndigits);
  752. scalar = sk[!carry];
  753. num_bits = sizeof(uint64_t) * ndigits * 8 + 1;
  754. vli_set(rx[1], point->x, ndigits);
  755. vli_set(ry[1], point->y, ndigits);
  756. xycz_initial_double(rx[1], ry[1], rx[0], ry[0], initial_z, curve_prime,
  757. ndigits);
  758. for (i = num_bits - 2; i > 0; i--) {
  759. nb = !vli_test_bit(scalar, i);
  760. xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve_prime,
  761. ndigits);
  762. xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve_prime,
  763. ndigits);
  764. }
  765. nb = !vli_test_bit(scalar, 0);
  766. xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve_prime,
  767. ndigits);
  768. /* Find final 1/Z value. */
  769. /* X1 - X0 */
  770. _vli_mod_sub(z, rx[1], rx[0], curve_prime, ndigits);
  771. /* Yb * (X1 - X0) */
  772. _vli_mod_mult_fast(z, z, ry[1 - nb], curve_prime, ndigits);
  773. /* xP * Yb * (X1 - X0) */
  774. _vli_mod_mult_fast(z, z, point->x, curve_prime, ndigits);
  775. /* 1 / (xP * Yb * (X1 - X0)) */
  776. _vli_mod_inv(z, z, curve_prime, ndigits);
  777. /* yP / (xP * Yb * (X1 - X0)) */
  778. _vli_mod_mult_fast(z, z, point->y, curve_prime, ndigits);
  779. /* Xb * yP / (xP * Yb * (X1 - X0)) */
  780. _vli_mod_mult_fast(z, z, rx[1 - nb], curve_prime, ndigits);
  781. /* End 1/Z calculation */
  782. xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve_prime, ndigits);
  783. apply_z(rx[0], ry[0], z, curve_prime, ndigits);
  784. vli_set(result->x, rx[0], ndigits);
  785. vli_set(result->y, ry[0], ndigits);
  786. }
  787. /* Returns true if p_point is the point at infinity, false otherwise. */
  788. bool _ecc_point_is_zero(const struct l_ecc_point *point)
  789. {
  790. return (vli_is_zero(point->x, point->curve->ndigits) &&
  791. vli_is_zero(point->y, point->curve->ndigits));
  792. }