| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009 |
- /*
- *
- * Embedded Linux library
- *
- * Copyright (C) 2018 Intel Corporation. All rights reserved.
- *
- * This library is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * This library is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with this library; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
- *
- */
- #ifdef HAVE_CONFIG_H
- #include <config.h>
- #endif
- #define _GNU_SOURCE
- #include <stdio.h>
- #include <stdint.h>
- #include <stdbool.h>
- #include <string.h>
- #include <stdlib.h>
- #include <errno.h>
- #include "ecc.h"
- #include "ecc-private.h"
- #include "random.h"
- #include "useful.h"
- #include "private.h"
- #include "missing.h"
- /*
- * RFC 5114 - Section 2.6 256-bit Random ECP Group
- */
- #define P256_CURVE_P { 0xFFFFFFFFFFFFFFFFull, 0x00000000FFFFFFFFull, \
- 0x0000000000000000ull, 0xFFFFFFFF00000001ull }
- #define P256_CURVE_GX { 0xF4A13945D898C296ull, 0x77037D812DEB33A0ull, \
- 0xF8BCE6E563A440F2ull, 0x6B17D1F2E12C4247ull }
- #define P256_CURVE_GY { 0xCBB6406837BF51F5ull, 0x2BCE33576B315ECEull, \
- 0x8EE7EB4A7C0F9E16ull, 0x4FE342E2FE1A7F9Bull }
- #define P256_CURVE_N { 0xF3B9CAC2FC632551ull, 0xBCE6FAADA7179E84ull, \
- 0xFFFFFFFFFFFFFFFFull, 0xFFFFFFFF00000000ull }
- #define P256_CURVE_B { 0x3BCE3C3E27D2604Bull, 0x651D06B0CC53B0F6ull, \
- 0xB3EBBD55769886BCull, 0x5AC635D8AA3A93E7ull }
- static const struct l_ecc_curve p256 = {
- .name = "secp256r1",
- .ike_group = 19,
- .tls_group = 23,
- .ndigits = 4,
- .g = {
- .x = P256_CURVE_GX,
- .y = P256_CURVE_GY,
- .curve = &p256
- },
- .p = P256_CURVE_P,
- .n = P256_CURVE_N,
- .b = P256_CURVE_B,
- .z = -10,
- };
- /*
- * RFC 5114 - Section 2.7 384-bit Random ECP Group
- */
- #define P384_CURVE_P { 0x00000000FFFFFFFFull, 0xFFFFFFFF00000000ull, \
- 0xFFFFFFFFFFFFFFFEull, 0xFFFFFFFFFFFFFFFFull, \
- 0xFFFFFFFFFFFFFFFFull, 0xFFFFFFFFFFFFFFFFull }
- #define P384_CURVE_GX { 0x3A545E3872760AB7ull, 0x5502F25DBF55296Cull, \
- 0x59F741E082542A38ull, 0x6E1D3B628BA79B98ull, \
- 0x8EB1C71EF320AD74ull, 0xAA87CA22BE8B0537ull }
- #define P384_CURVE_GY { 0x7A431D7C90EA0E5Full, 0x0A60B1CE1D7E819Dull, \
- 0xE9DA3113B5F0B8C0ull, 0xF8F41DBD289A147Cull, \
- 0x5D9E98BF9292DC29ull, 0x3617DE4A96262C6Full }
- #define P384_CURVE_N { 0xECEC196ACCC52973ull, 0x581A0DB248B0A77Aull, \
- 0xC7634D81F4372DDFull, 0xFFFFFFFFFFFFFFFFull, \
- 0xFFFFFFFFFFFFFFFFull, 0xFFFFFFFFFFFFFFFFull }
- #define P384_CURVE_B { 0x2A85C8EDD3EC2AEFull, 0xC656398D8A2ED19Dull, \
- 0x0314088F5013875Aull, 0x181D9C6EFE814112ull, \
- 0x988E056BE3F82D19ull, 0xB3312FA7E23EE7E4ull }
- static const struct l_ecc_curve p384 = {
- .name = "secp384r1",
- .ike_group = 20,
- .tls_group = 24,
- .ndigits = 6,
- .g = {
- .x = P384_CURVE_GX,
- .y = P384_CURVE_GY,
- .curve = &p384
- },
- .p = P384_CURVE_P,
- .n = P384_CURVE_N,
- .b = P384_CURVE_B,
- .z = -12,
- };
- static const struct l_ecc_curve *curves[] = {
- &p384,
- &p256,
- };
- /* Returns supported IKE groups, sorted by the highest effective key size */
- LIB_EXPORT const unsigned int *l_ecc_supported_ike_groups(void)
- {
- static unsigned int supported_ike_groups[L_ARRAY_SIZE(curves) + 1];
- static bool ike_first = true;
- if (ike_first) {
- unsigned int i;
- for (i = 0; i < L_ARRAY_SIZE(curves); i++)
- supported_ike_groups[i] = curves[i]->ike_group;
- supported_ike_groups[i] = 0;
- ike_first = false;
- }
- return supported_ike_groups;
- }
- /* Returns supported TLS groups, sorted by the highest effective key size */
- LIB_EXPORT const unsigned int *l_ecc_supported_tls_groups(void)
- {
- static unsigned int supported_tls_groups[L_ARRAY_SIZE(curves) + 1];
- static bool tls_first = true;
- if (tls_first) {
- unsigned int i;
- for (i = 0; i < L_ARRAY_SIZE(curves); i++)
- supported_tls_groups[i] = curves[i]->tls_group;
- supported_tls_groups[i] = 0;
- tls_first = false;
- }
- return supported_tls_groups;
- }
- LIB_EXPORT const struct l_ecc_curve *l_ecc_curve_from_name(const char *name)
- {
- int i;
- if (unlikely(!name))
- return NULL;
- for (i = 0; curves[i]; i++) {
- if (!strcmp(curves[i]->name, name))
- return curves[i];
- }
- return NULL;
- }
- LIB_EXPORT const struct l_ecc_curve *l_ecc_curve_from_ike_group(
- unsigned int group)
- {
- unsigned int i;
- for (i = 0; i < L_ARRAY_SIZE(curves); i++) {
- if (curves[i]->ike_group == group)
- return curves[i];
- }
- return NULL;
- }
- LIB_EXPORT const struct l_ecc_curve *l_ecc_curve_from_tls_group(
- unsigned int group)
- {
- unsigned int i;
- for (i = 0; i < L_ARRAY_SIZE(curves); i++) {
- if (curves[i]->tls_group == group)
- return curves[i];
- }
- return NULL;
- }
- LIB_EXPORT const char *l_ecc_curve_get_name(const struct l_ecc_curve *curve)
- {
- if (unlikely(!curve))
- return NULL;
- return curve->name;
- }
- LIB_EXPORT unsigned int l_ecc_curve_get_ike_group(
- const struct l_ecc_curve *curve)
- {
- if (unlikely(!curve))
- return 0;
- return curve->ike_group;
- }
- LIB_EXPORT unsigned int l_ecc_curve_get_tls_group(
- const struct l_ecc_curve *curve)
- {
- if (unlikely(!curve))
- return 0;
- return curve->tls_group;
- }
- LIB_EXPORT struct l_ecc_scalar *l_ecc_curve_get_order(
- const struct l_ecc_curve *curve)
- {
- return _ecc_constant_new(curve, curve->n, curve->ndigits * 8);
- }
- LIB_EXPORT struct l_ecc_scalar *l_ecc_curve_get_prime(
- const struct l_ecc_curve *curve)
- {
- if (unlikely(!curve))
- return NULL;
- return _ecc_constant_new(curve, curve->p, curve->ndigits * 8);
- }
- LIB_EXPORT size_t l_ecc_curve_get_scalar_bytes(const struct l_ecc_curve *curve)
- {
- if (unlikely(!curve))
- return 0;
- return curve->ndigits * 8;
- }
- static bool ecc_valid_point(struct l_ecc_point *point)
- {
- const struct l_ecc_curve *curve = point->curve;
- uint64_t tmp1[L_ECC_MAX_DIGITS];
- uint64_t tmp2[L_ECC_MAX_DIGITS];
- uint64_t _3[L_ECC_MAX_DIGITS] = { 3 }; /* -a = 3 */
- unsigned int ndigits = curve->ndigits;
- /* The point at infinity is invalid. */
- if (_ecc_point_is_zero(point))
- return false;
- /* x and y must be smaller than p. */
- if (_vli_cmp(curve->p, point->x, ndigits) != 1 ||
- _vli_cmp(curve->p, point->y, ndigits) != 1)
- return false;
- /* Computes result = y^2. */
- _vli_mod_square_fast(tmp1, point->y, curve->p, ndigits);
- /* Computes result = x^3 + ax + b. result must not overlap x. */
- /* r = x^2 */
- _vli_mod_square_fast(tmp2, point->x, curve->p, ndigits);
- /* r = x^2 - 3 */
- _vli_mod_sub(tmp2, tmp2, _3, curve->p, ndigits);
- /* r = x^3 - 3x */
- _vli_mod_mult_fast(tmp2, tmp2, point->x, curve->p, ndigits);
- /* r = x^3 - 3x + b */
- _vli_mod_add(tmp2, tmp2, curve->b, curve->p, ndigits);
- /* Make sure that y^2 == x^3 + ax + b */
- return (_vli_cmp(tmp1, tmp2, ndigits) == 0);
- }
- void _ecc_be2native(uint64_t *dest, const uint64_t *bytes,
- unsigned int ndigits)
- {
- unsigned int i;
- uint64_t tmp[2 * L_ECC_MAX_DIGITS];
- for (i = 0; i < ndigits; i++)
- tmp[ndigits - 1 - i] = l_get_be64(&bytes[i]);
- memcpy(dest, tmp, ndigits * 8);
- }
- void _ecc_native2be(uint64_t *dest, const uint64_t *native,
- unsigned int ndigits)
- {
- unsigned int i;
- uint64_t tmp[L_ECC_MAX_DIGITS];
- for (i = 0; i < ndigits; i++)
- l_put_be64(native[ndigits - 1 - i], &tmp[i]);
- memcpy(dest, tmp, ndigits * 8);
- }
- static void ecc_compute_y_sqr(const struct l_ecc_curve *curve,
- uint64_t *y_sqr, const uint64_t *x)
- {
- uint64_t sum[L_ECC_MAX_DIGITS] = { 0 };
- uint64_t tmp[L_ECC_MAX_DIGITS] = { 0 };
- uint64_t _3[L_ECC_MAX_DIGITS] = { 3ull }; /* -a = 3 */
- /* x^3 */
- _vli_mod_square_fast(sum, x, curve->p, curve->ndigits);
- _vli_mod_mult_fast(sum, sum, x, curve->p, curve->ndigits);
- /* x^3 - ax */
- _vli_mod_mult_fast(tmp, _3, x, curve->p, curve->ndigits);
- _vli_mod_sub(sum, sum, tmp, curve->p, curve->ndigits);
- /* x^3 - ax + b */
- _vli_mod_add(sum, sum, curve->b, curve->p, curve->ndigits);
- memcpy(y_sqr, sum, curve->ndigits * 8);
- }
- /*
- * Compute sqrt(y^2)
- * Since our prime p satisfies p = 3 (mod 4), we can say:
- *
- * y = (y^2)^((p + 1) / 4)
- *
- * This avoids the need for a square root function.
- */
- static void ecc_compute_sqrt(const struct l_ecc_curve *curve,
- uint64_t *y, const uint64_t *y_sqr)
- {
- uint64_t expo[L_ECC_MAX_DIGITS];
- uint64_t one[L_ECC_MAX_DIGITS] = { 1ull };
- memcpy(expo, curve->p, curve->ndigits * 8);
- /* (p + 1) / 4 == (p >> 2) + 1 */
- _vli_rshift1(expo, curve->ndigits);
- _vli_rshift1(expo, curve->ndigits);
- _vli_mod_add(expo, expo, one, curve->p, curve->ndigits);
- /* sum ^ ((p + 1) / 4) */
- _vli_mod_exp(y, y_sqr, expo, curve->p, curve->ndigits);
- }
- bool _ecc_compute_y(const struct l_ecc_curve *curve, uint64_t *y,
- const uint64_t *x)
- {
- uint64_t sum[L_ECC_MAX_DIGITS] = { 0 };
- uint64_t check[L_ECC_MAX_DIGITS] = { 0 };
- /* y = sqrt(x^3 + ax + b) (mod p) */
- ecc_compute_y_sqr(curve, sum, x);
- ecc_compute_sqrt(curve, y, sum);
- /* square y to ensure we have a correct value */
- _vli_mod_mult_fast(check, y, y, curve->p, curve->ndigits);
- if (_vli_cmp(check, sum, curve->ndigits) != 0)
- return false;
- return true;
- }
- /*
- * IETF - Compact representation of an elliptic curve point:
- * https://tools.ietf.org/id/draft-jivsov-ecc-compact-00.xml
- *
- * "min(y,p-y) can be calculated with the help of the pre-calculated value
- * p2=(p-1)/2. min(y,p-y) is y if y<p2 and p-y otherwise."
- */
- void _ecc_calculate_p2(const struct l_ecc_curve *curve, uint64_t *p2)
- {
- uint64_t one[L_ECC_MAX_DIGITS] = { 1 };
- _vli_mod_sub(p2, curve->p, one, curve->p, curve->ndigits);
- _vli_rshift1(p2, curve->ndigits);
- }
- /*
- * IETF draft-jivsov-ecc-compact-00 Section 4.1
- * Encoding and decoding of an elliptic curve point
- * ...
- * Decoding:
- * Given the compact representation of Q, return canonical representation
- * of Q=(x,y) as follows:
- * 1. y' = sqrt( x^3 + a*x + b ), where y'>0
- * 2. y = min(y',p-y')
- * 3. Q=(x,y) is the canonical representation of the point
- */
- static bool decode_point(const struct l_ecc_curve *curve, uint64_t *x,
- struct l_ecc_point *point)
- {
- uint64_t y_min[L_ECC_MAX_DIGITS];
- uint64_t p2[L_ECC_MAX_DIGITS];
- if (!_ecc_compute_y(curve, y_min, (uint64_t *)x))
- return false;
- _ecc_calculate_p2(curve, p2);
- if (_vli_cmp(y_min, p2, curve->ndigits) >= 0)
- _vli_mod_sub(point->y, curve->p, y_min,
- curve->p, curve->ndigits);
- else
- memcpy(point->y, y_min, curve->ndigits * 8);
- memcpy(point->x, x, curve->ndigits * 8);
- return true;
- }
- /* (rx, ry) = (px, py) + (qx, qy) */
- void _ecc_point_add(struct l_ecc_point *ret, const struct l_ecc_point *p,
- const struct l_ecc_point *q,
- const uint64_t *curve_prime)
- {
- /*
- * s = (py - qy)/(px - qx)
- *
- * rx = s^2 - px - qx
- * ry = s(px - rx) - py
- */
- uint64_t s[L_ECC_MAX_DIGITS];
- uint64_t kp1[L_ECC_MAX_DIGITS];
- uint64_t kp2[L_ECC_MAX_DIGITS];
- uint64_t resx[L_ECC_MAX_DIGITS];
- uint64_t resy[L_ECC_MAX_DIGITS];
- unsigned int ndigits = p->curve->ndigits;
- memset(s, 0, ndigits * 8);
- /* kp1 = py - qy */
- _vli_mod_sub(kp1, q->y, p->y, curve_prime, ndigits);
- /* kp2 = px - qx */
- _vli_mod_sub(kp2, q->x, p->x, curve_prime, ndigits);
- /* s = kp1/kp2 */
- _vli_mod_inv(kp2, kp2, curve_prime, ndigits);
- _vli_mod_mult_fast(s, kp1, kp2, curve_prime, ndigits);
- /* rx = s^2 - px - qx */
- _vli_mod_mult_fast(kp1, s, s, curve_prime, ndigits);
- _vli_mod_sub(kp1, kp1, p->x, curve_prime, ndigits);
- _vli_mod_sub(resx, kp1, q->x, curve_prime, ndigits);
- /* ry = s(px - rx) - py */
- _vli_mod_sub(kp1, p->x, resx, curve_prime, ndigits);
- _vli_mod_mult_fast(kp1, s, kp1, curve_prime, ndigits);
- _vli_mod_sub(resy, kp1, p->y, curve_prime, ndigits);
- memcpy(ret->x, resx, ndigits * 8);
- memcpy(ret->y, resy, ndigits * 8);
- }
- /* result = (base ^ exp) % p */
- void _vli_mod_exp(uint64_t *result, const uint64_t *base, const uint64_t *exp,
- const uint64_t *mod, unsigned int ndigits)
- {
- unsigned int i;
- int bit;
- uint64_t n[L_ECC_MAX_DIGITS];
- uint64_t r[L_ECC_MAX_DIGITS] = { 1 };
- memcpy(n, base, ndigits * 8);
- for (i = 0; i < ndigits; i++) {
- for (bit = 0; bit < 64; bit++) {
- uint64_t tmp[L_ECC_MAX_DIGITS];
- if (exp[i] & (1ull << bit)) {
- _vli_mod_mult_fast(tmp, r, n, mod, ndigits);
- memcpy(r, tmp, ndigits * 8);
- }
- _vli_mod_mult_fast(tmp, n, n, mod, ndigits);
- memcpy(n, tmp, ndigits * 8);
- }
- }
- memcpy(result, r, ndigits * 8);
- }
- __attribute__((noinline)) static int vli_equal(const uint64_t *a,
- const uint64_t *b,
- unsigned int ndigits)
- {
- uint64_t diff = 0;
- unsigned int i;
- for (i = 0; i < ndigits; i++) {
- diff |= a[i] ^ b[i];
- __asm__ ("" : "=r" (diff) : "0" (diff));
- }
- return (~diff & (diff - 1)) >> 63;
- }
- int _vli_legendre(uint64_t *val, const uint64_t *p, unsigned int ndigits)
- {
- uint64_t tmp[L_ECC_MAX_DIGITS];
- uint64_t exp[L_ECC_MAX_DIGITS];
- uint64_t _1[L_ECC_MAX_DIGITS] = { 1ull };
- uint64_t _0[L_ECC_MAX_DIGITS] = { 0 };
- /* check that val ^ ((p - 1) / 2) == [1, 0 or -1] */
- _vli_sub(exp, p, _1, ndigits);
- _vli_rshift1(exp, ndigits);
- _vli_mod_exp(tmp, val, exp, p, ndigits);
- if (_vli_cmp(tmp, _1, ndigits) == 0)
- return 1;
- if (_vli_cmp(tmp, _0, ndigits) == 0)
- return 0;
- return -1;
- }
- bool _vli_is_zero_or_one(const uint64_t *vli, unsigned int ndigits)
- {
- uint64_t _1[L_ECC_MAX_DIGITS] = { 1ull };
- int ret;
- ret = secure_select(vli_equal(vli, _1, ndigits), true, false);
- ret = secure_select(l_secure_memeq(vli, ndigits * 8, 0), true, ret);
- return ret;
- }
- LIB_EXPORT struct l_ecc_point *l_ecc_point_new(const struct l_ecc_curve *curve)
- {
- struct l_ecc_point *p = l_new(struct l_ecc_point, 1);
- p->curve = curve;
- return p;
- }
- LIB_EXPORT struct l_ecc_point *l_ecc_point_from_data(
- const struct l_ecc_curve *curve,
- enum l_ecc_point_type type,
- const void *data, size_t len)
- {
- struct l_ecc_point *p;
- size_t bytes = curve->ndigits * 8;
- if (!data)
- return NULL;
- /* In all cases there should be an X coordinate in data */
- if (len < bytes)
- return NULL;
- p = l_ecc_point_new(curve);
- _ecc_be2native(p->x, (void *) data, curve->ndigits);
- switch (type) {
- case L_ECC_POINT_TYPE_COMPLIANT:
- if (!decode_point(curve, p->x, p))
- goto failed;
- break;
- case L_ECC_POINT_TYPE_COMPRESSED_BIT0:
- if (!_ecc_compute_y(curve, p->y, p->x))
- goto failed;
- if (!(p->y[0] & 1))
- _vli_mod_sub(p->y, curve->p, p->y, curve->p,
- curve->ndigits);
- break;
- case L_ECC_POINT_TYPE_COMPRESSED_BIT1:
- if (!_ecc_compute_y(curve, p->y, p->x))
- goto failed;
- if (p->y[0] & 1)
- _vli_mod_sub(p->y, curve->p, p->y, curve->p,
- curve->ndigits);
- break;
- case L_ECC_POINT_TYPE_FULL:
- if (len < bytes * 2)
- goto failed;
- _ecc_be2native(p->y, (void *) data + bytes, curve->ndigits);
- if (!ecc_valid_point(p))
- goto failed;
- break;
- }
- return p;
- failed:
- l_free(p);
- return NULL;
- }
- LIB_EXPORT struct l_ecc_point *l_ecc_point_from_sswu(
- const struct l_ecc_scalar *u)
- {
- const struct l_ecc_curve *curve = u->curve;
- unsigned int ndigits = curve->ndigits;
- uint64_t z[L_ECC_MAX_DIGITS] = { abs(curve->z) };
- uint64_t _3[L_ECC_MAX_DIGITS] = { 3ull }; /* -a = 3 */
- uint64_t u2z[L_ECC_MAX_DIGITS];
- uint64_t t1[L_ECC_MAX_DIGITS];
- uint64_t t2[L_ECC_MAX_DIGITS];
- uint64_t m[L_ECC_MAX_DIGITS];
- uint64_t t[L_ECC_MAX_DIGITS];
- uint64_t x1l[L_ECC_MAX_DIGITS];
- uint64_t x1r[L_ECC_MAX_DIGITS];
- uint64_t x1[L_ECC_MAX_DIGITS];
- uint64_t gx1[L_ECC_MAX_DIGITS];
- uint64_t x2[L_ECC_MAX_DIGITS];
- uint64_t gx2[L_ECC_MAX_DIGITS];
- /* reuse m/t/x1l,x1r, they are unused by the time x/v/y/p-y is needed */
- uint64_t *x = m;
- uint64_t *v = t;
- uint64_t *yl = x1l;
- uint64_t *yr = x1r;
- bool l;
- struct l_ecc_point *P;
- /*
- * m = (z^2 * u^4 + z * u^2) modulo p
- * u2z = u^2 * z
- * t2 = u2z^2
- * m = t2 - u2z since for all our curves z is negative
- */
- _vli_mod_square_fast(u2z, u->c, curve->p, ndigits);
- _vli_mod_mult_fast(u2z, u2z, z, curve->p, ndigits);
- _vli_mod_square_fast(t2, u2z, curve->p, ndigits);
- _vli_mod_sub(m, t2, u2z, curve->p, ndigits);
- /*
- * l = CEQ(m, 0)
- * t = inv0(m) where inv0(x) is calculated as x^(p-2) modulo p
- */
- l = l_secure_memeq(m, sizeof(m), 0);
- memset(t2, 0, sizeof(t2));
- t2[0] = 2ull;
- _vli_mod_sub(t1, curve->p, t2, curve->p, ndigits);
- _vli_mod_exp(t, m, t1, curve->p, ndigits);
- /* Calculate: b / z*a, both z and a are negative */
- _vli_mod_mult_fast(t1, z, _3, curve->p, ndigits);
- _vli_mod_inv(t1, t1, curve->p, ndigits);
- _vli_mod_mult_fast(x1l, curve->b, t1, curve->p, ndigits);
- /* t = 1 + t */
- memset(t2, 0, sizeof(t2));
- t2[0] = 1ull;
- _vli_mod_add(t, t, t2, curve->p, ndigits);
- /* t1 = 1 / a */
- _vli_mod_inv(t1, _3, curve->p, ndigits);
- /* x1r = b * t1 * t */
- _vli_mod_mult_fast(x1r, curve->b, t1, curve->p, ndigits);
- _vli_mod_mult_fast(x1r, x1r, t, curve->p, ndigits);
- /* x1 = CSEL(l, (b / (z*a) modulo p), ((-b/a) * (1 + t)) modulo p) */
- l_secure_select(l, x1l, x1r, x1, ndigits * 8);
- /* gx1 = (x1^3 + a*x1 + b) modulo p */
- ecc_compute_y_sqr(curve, gx1, x1);
- /* x2 = (z*u^2*x1) modulo p, z is negative, hence the second op */
- _vli_mod_mult_fast(x2, u2z, x1, curve->p, ndigits);
- _vli_mod_sub(x2, curve->p, x2, curve->p, ndigits);
- /* gx2 = (x2^3 + a*x2 + b) modulo p */
- ecc_compute_y_sqr(curve, gx2, x2);
- /*
- * l = gx1 is a quadratic residue modulo p
- * x is a quadratic residue if x^((p-1)/2) modulo p is zero or one
- */
- _vli_mod_sub(t1, curve->p, t2, curve->p, ndigits);
- _vli_rshift1(t1, ndigits);
- _vli_mod_exp(t2, gx1, t1, curve->p, ndigits);
- l = _vli_is_zero_or_one(t2, ndigits);
- /* v = CSEL(l, gx1, gx2) */
- l_secure_select(l, gx1, gx2, v, ndigits * 8);
- /* x = CSEL(l, x1, x2) */
- l_secure_select(l, x1, x2, x, ndigits * 8);
- /* y = sqrt(v) */
- ecc_compute_sqrt(curve, yl, v);
- /* l = CEQ(LSB(u), LSB(y)) */
- l = !((u->c[0] & 1ull) ^ (yl[0] & 1ull));
- /* p - y */
- _vli_mod_sub(yr, curve->p, yl, curve->p, ndigits);
- /* P = CSEL(l, (x,y), (x, p-y)) */
- P = l_ecc_point_new(curve);
- memcpy(P->x, x, ndigits * 8);
- l_secure_select(l, yl, yr, P->y, ndigits * 8);
- return P;
- }
- LIB_EXPORT struct l_ecc_point *l_ecc_point_clone(const struct l_ecc_point *p)
- {
- if (!p)
- return NULL;
- return l_memdup(p, sizeof(*p));
- }
- LIB_EXPORT const struct l_ecc_curve *l_ecc_point_get_curve(
- const struct l_ecc_point *p)
- {
- if (!p)
- return NULL;
- return p->curve;
- }
- LIB_EXPORT ssize_t l_ecc_point_get_x(const struct l_ecc_point *p, void *x,
- size_t xlen)
- {
- if (xlen < p->curve->ndigits * 8)
- return -EMSGSIZE;
- _ecc_native2be(x, p->x, p->curve->ndigits);
- return p->curve->ndigits * 8;
- }
- LIB_EXPORT ssize_t l_ecc_point_get_y(const struct l_ecc_point *p, void *y,
- size_t ylen)
- {
- if (ylen < p->curve->ndigits * 8)
- return -EMSGSIZE;
- _ecc_native2be(y, p->y, p->curve->ndigits);
- return p->curve->ndigits * 8;
- }
- LIB_EXPORT ssize_t l_ecc_point_get_data(const struct l_ecc_point *p, void *buf,
- size_t len)
- {
- if (len < (p->curve->ndigits * 8) * 2)
- return -EMSGSIZE;
- _ecc_native2be(buf, (uint64_t *) p->x, p->curve->ndigits);
- _ecc_native2be(buf + (p->curve->ndigits * 8), (uint64_t *) p->y,
- p->curve->ndigits);
- return (p->curve->ndigits * 8) * 2;
- }
- LIB_EXPORT void l_ecc_point_free(struct l_ecc_point *p)
- {
- if (unlikely(!p))
- return;
- explicit_bzero(p->x, p->curve->ndigits * 8);
- explicit_bzero(p->y, p->curve->ndigits * 8);
- l_free(p);
- }
- struct l_ecc_scalar *_ecc_constant_new(const struct l_ecc_curve *curve,
- const void *buf, size_t len)
- {
- struct l_ecc_scalar *c;
- if (unlikely(!curve))
- return NULL;
- if (buf && len != curve->ndigits * 8)
- return NULL;
- c = l_new(struct l_ecc_scalar, 1);
- c->curve = curve;
- if (buf)
- memcpy(c->c, buf, len);
- return c;
- }
- LIB_EXPORT struct l_ecc_scalar *l_ecc_scalar_new(
- const struct l_ecc_curve *curve,
- const void *buf, size_t len)
- {
- struct l_ecc_scalar *c;
- c = _ecc_constant_new(curve, NULL, 0);
- if (!c)
- return NULL;
- if (!buf)
- return c;
- _ecc_be2native(c->c, buf, curve->ndigits);
- if (!_vli_is_zero_or_one(c->c, curve->ndigits) &&
- secure_memcmp_64(curve->n, c->c, curve->ndigits) > 0)
- return c;
- l_ecc_scalar_free(c);
- return NULL;
- }
- /*
- * Build a scalar = value modulo p where p is the prime number for a given
- * curve. bytes can contain a numer with up to 2x number of digits as the
- * curve. This is used in Hash to Curve calculations.
- */
- LIB_EXPORT struct l_ecc_scalar *l_ecc_scalar_new_modp(
- const struct l_ecc_curve *curve,
- const void *bytes, size_t len)
- {
- struct l_ecc_scalar *c;
- uint64_t tmp[2 * L_ECC_MAX_DIGITS];
- unsigned int ndigits = len / 8;
- if (!bytes)
- return NULL;
- if (len % 8)
- return NULL;
- if (ndigits > curve->ndigits * 2)
- return NULL;
- c = _ecc_constant_new(curve, NULL, 0);
- if (!c)
- return NULL;
- memset(tmp, 0, sizeof(tmp));
- _ecc_be2native(tmp, bytes, ndigits);
- _vli_mmod_fast(c->c, tmp, curve->p, curve->ndigits);
- if (!_vli_is_zero_or_one(c->c, curve->ndigits) &&
- secure_memcmp_64(curve->n, c->c, curve->ndigits) > 0)
- return c;
- l_ecc_scalar_free(c);
- return NULL;
- }
- /*
- * Takes a buffer of the same size as the curve and scales it to a range
- * 1..n using value = (value mod (n - 1)) + 1. For the curves we support
- * this can be done using a subtraction operation due to the size of n
- */
- LIB_EXPORT struct l_ecc_scalar *l_ecc_scalar_new_reduced_1_to_n(
- const struct l_ecc_curve *curve,
- const void *buf, size_t len)
- {
- uint64_t _1[L_ECC_MAX_DIGITS] = { 1ull };
- uint64_t tmp[L_ECC_MAX_DIGITS];
- struct l_ecc_scalar *c;
- if (!buf)
- return NULL;
- if (len != curve->ndigits * 8)
- return NULL;
- c = _ecc_constant_new(curve, NULL, 0);
- if (!c)
- return NULL;
- _vli_sub(tmp, curve->n, _1, curve->ndigits);
- _ecc_be2native(c->c, buf, curve->ndigits);
- if (_vli_cmp(c->c, tmp, curve->ndigits) >= 0)
- _vli_sub(c->c, c->c, tmp, curve->ndigits);
- _vli_add(c->c, c->c, _1, curve->ndigits);
- return c;
- }
- LIB_EXPORT struct l_ecc_scalar *l_ecc_scalar_new_random(
- const struct l_ecc_curve *curve)
- {
- uint64_t r[L_ECC_MAX_DIGITS];
- l_getrandom(r, curve->ndigits * 8);
- while (_vli_cmp(r, curve->p, curve->ndigits) > 0 ||
- _vli_cmp(r, curve->n, curve->ndigits) > 0 ||
- _vli_is_zero_or_one(r, curve->ndigits))
- l_getrandom(r, curve->ndigits * 8);
- return _ecc_constant_new(curve, r, curve->ndigits * 8);
- }
- LIB_EXPORT ssize_t l_ecc_scalar_get_data(const struct l_ecc_scalar *c,
- void *buf, size_t len)
- {
- if (len < c->curve->ndigits * 8)
- return -EMSGSIZE;
- _ecc_native2be(buf, (uint64_t *) c->c, c->curve->ndigits);
- return c->curve->ndigits * 8;
- }
- LIB_EXPORT void l_ecc_scalar_free(struct l_ecc_scalar *c)
- {
- if (unlikely(!c))
- return;
- explicit_bzero(c->c, c->curve->ndigits * 8);
- l_free(c);
- }
- LIB_EXPORT bool l_ecc_scalar_add(struct l_ecc_scalar *ret,
- const struct l_ecc_scalar *a,
- const struct l_ecc_scalar *b,
- const struct l_ecc_scalar *mod)
- {
- if (unlikely(!ret || !a || !b || !mod))
- return false;
- _vli_mod_add(ret->c, a->c, b->c, mod->c, a->curve->ndigits);
- return true;
- }
- LIB_EXPORT bool l_ecc_point_multiply(struct l_ecc_point *ret,
- const struct l_ecc_scalar *scalar,
- const struct l_ecc_point *point)
- {
- if (unlikely(!ret || !scalar || !point))
- return false;
- _ecc_point_mult(ret, point, scalar->c, NULL, scalar->curve->p);
- return true;
- }
- LIB_EXPORT bool l_ecc_point_add(struct l_ecc_point *ret,
- const struct l_ecc_point *a,
- const struct l_ecc_point *b)
- {
- if (unlikely(!ret || !a || !b))
- return false;
- _ecc_point_add(ret, a, b, a->curve->p);
- return true;
- }
- LIB_EXPORT bool l_ecc_point_inverse(struct l_ecc_point *p)
- {
- if (unlikely(!p))
- return false;
- _vli_mod_sub(p->y, p->curve->p, p->y, p->curve->p, p->curve->ndigits);
- return true;
- }
- LIB_EXPORT bool l_ecc_scalar_multiply(struct l_ecc_scalar *ret,
- const struct l_ecc_scalar *a,
- const struct l_ecc_scalar *b)
- {
- if (unlikely(!ret || !a || !b))
- return false;
- _vli_mod_mult_fast(ret->c, a->c, b->c, a->curve->p, a->curve->ndigits);
- return true;
- }
- LIB_EXPORT int l_ecc_scalar_legendre(struct l_ecc_scalar *value)
- {
- if (unlikely(!value))
- return -1;
- return _vli_legendre(value->c, value->curve->p, value->curve->ndigits);
- }
- LIB_EXPORT bool l_ecc_scalar_sum_x(struct l_ecc_scalar *ret,
- const struct l_ecc_scalar *x)
- {
- if (unlikely(!ret || !x))
- return false;
- ecc_compute_y_sqr(x->curve, ret->c, x->c);
- return true;
- }
- LIB_EXPORT bool l_ecc_scalars_are_equal(const struct l_ecc_scalar *a,
- const struct l_ecc_scalar *b)
- {
- if (unlikely(!a || !b))
- return false;
- return (memcmp(a->c, b->c, a->curve->ndigits * 8) == 0);
- }
- LIB_EXPORT bool l_ecc_points_are_equal(const struct l_ecc_point *a,
- const struct l_ecc_point *b)
- {
- if (unlikely(!a || !b))
- return false;
- return ((memcmp(a->x, b->x, a->curve->ndigits * 8) == 0) &&
- (memcmp(a->y, b->y, a->curve->ndigits * 8) == 0));
- }
|